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ABSTRACT

It is shown that, if one expresses the hadronic scattering amplitude as
a sum of contributions from individual quark diagrams, each of these quark
diagram contributions will obey a logarithmic scaling Taw 1in the
high energy fixed angle 1ihit. The ingredients of the proof are the linear
motion of singularities in the complex angular momentum plane and certain
analyticity assumptions. The logarithmic scaling law emerges from the requirement
of consistency of the behaviors of the individual quark diagram amplitude in the
fixed angle high energy regime and in the Regge regime. Each quark diagram
is found to have an intrinsic scale set by the slope of the "dominant" singularity
in the complex angular momentum plane of any one of its channels, i.e., the
singularity whose trajectory lies highest for large negative values of that
channel's Mandelstam variable. Complex angular momentum plane singularities
that are dominant in different channels of the same quark diagram must therefore
have the same slope. As the Pomeranchuk singularity and Regge-Regge cuts zre
dominant in different channels of the same (twisted loop) quark diagram, it
follows that they must have the same slope of ~0.42 GeV‘z. Assuming a small
number of quark diagrams to dominate the physical scattering amnlitude at oresent
energies and fixed anglés, the differential cross-section is found to aiso obey a

logarithmic scaling law which agrees with the wide-angle pp scattering data.



1. INTRODUCTION

Hadronic two body reactions have been extensively studied in the
Regge regime in which one of the Mandelstam variables {s, fer instance)
becomes large, while another {t or u) is kept fixed. Much less attention
has been devoted so far, to the regime of high energy fixed angle scattering.
In this regime all three Mandelstam variables (|s!, |t| and |u|) become
large, but all their ratios are kept fixed. In other words, kinematic
variables with dimensions of a mass squared become large and only dimension-
less quantities (like cos 8 ) are finite. If all hadrons had masses
smaller than some finite mass M, one might expect that in this regime
masses become irrelevant and amplitudes exhibit simple scaling properties,
Proposals of this type have been made by a number of authors.-| They ail
claim that there exists a dimension d, dependent on the dynamical imput,
such that sdA(s,ﬁ) (A = reaction amplitude) scales (i.e., depends only on
the scattering angle @) at high energies:

st Als 0) yrroed 1Z(9> (1.1)
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The real hadron spectrum does not exhibit any cut-off mass M.
Rather, resonances equally spaced in mass-squared and with ever increasing
masses are indicated by experiment. If such an unbounded hadron spectrum
is accepted, then a natural scale for fixed angle high energy scattering
is set by the spacing of about 1.2 GeV2 between consecutive {though arbitrarily
high 1ying) resonances. In view of the existence of such an intrinsic
scale, one would have to be somewhat skeptical about scaling laws of the
type (1.1), and explore possible alternatives. Most importantly, once a

scale is provided, an exponential behavior, for instance of the type
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may set in. Here p(s,e) is bounded by some power of s, o' is the scale para-

meter mentioned above (slope of Regge trajectories) and f (coss) some function

of tne scattering angle. Vith this possibility in mind, we shall explore

fixed angle high energy scattering in the context of a quark model with linearly
rising Regge trajectories. Dual resonance models (with loop corrections included}
are of this type but our arguments will be more general. Our major result is

that the contribution of any given (tree or loop) quark diagram D to the scattering
amplitude A(s,z) in the s> = , z = cos 8 = fixed 1imit obeys the logarithmic
scaling Taw ‘
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Here the "scale of the quark diagram D ", a'D, is set by the slope of the

(1.3a)

"dominant" singularity in the complex angular momentum plane of any one of the
diagram's (non-empty) Mandelstam channels, i.e., the singularity whose trajectory
lies highest for large negative values of that channel's Mandelstam variable.

The function f{z) takes the diagram-independent (except for details of the

imaginary part related to empty channels) form
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singularity, responsible for diffraction must have the same slope as Regge-Regae
cuts or in other words a slope half that of the usual (e.g. : or 2) Peqge
trajectories.

The logarithmic scaling law {Ea. (1.3)) emerges from the requirement
that the beh=zvior of the individual quark diagram aplitude in the fixed ancle
high anergy regime and in the Regge regime be consistent. Furthermore, we shall
see that the logarithmic scaling lTaw agrees with the existing data on ﬁide angle
pp-scattering.

The logarithmic scaling law (1.3) leads to the cut-off in transverse
momentum often postualted in the phenomenology of hadronic reactions. This cut-
off seems to be an inescapable consequence of linearly rising Regge-trajectories.

Logarithmic scaling laws can presumably be generalized to multiparticle

*
exclusive processes and thus, via Mueller argumenis, to inclusive processes.
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2. HIGH EJIERGY FIXED ANGLE SCATTERING I'! DUAL RESONANCE MODELS AS A GUIDC.

Bual rescnance mod:l: have an intrinsic scale: the slope o' of the
Regge trajectories. Ve shall now find some regularities exhibited by hich energy
fixed angle scatterinag in dual resonance models. Then we shall abstract these
regularities and in the next section prove that they hold on more general
grounds.

In dua1’resonance models, to each quark diagram there corresponds a
unique amplitude ca]cuTated according to the "Feynman'rules“ of the model. If
one Mandelstam variable (say, s} becomes large while another variable {say, t)
is kept fixed, the amplitude for a given quark diagram without loops either
exhibits Regge behavior B(t)sa(t) with oft) = a(0) + a't or falls exponentially
with s if the t-channel is "empty" (i.e., contains no Regge poles). In the
same kinematic T1imit the amplitude corresponding to the quark diagram with loops

D behaves in general Tike
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7 2. (<) S e (t)é_{:hs)]_,)n S VIRE
e AT f Md%) .......
K .
and the singularities in the t-channel angular momentum plane are either multiple
poles (in which case one deals with a renormalization effect to the input Regge

*
poles) or branch points (Regge-Regge cut, Pomeranchuk singularity , Pomeranchuk-

Regae cut, etc...) the remarkable feature of all these singularities is that

*%
their pecsitions ¢ = “Dti(t) in the complex #2-plane depend linearly on t
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Let us order the singularities aDtitt) according to their slope and intercent
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Then for large negative t, “Dt](t) will determine the asymptotic behavior
of the amplitude. We shall call “Dt](t) the dominant singularity in the
t-channel and denote its trajectory by

:.’O-( (c -f'—f
“Sf-(f) P>t ’ “wf t (2.1)

(dropping for simplicity the index 1).
We can summarize all this in the form

A) In the limit |s| >> [t] {or s > =, t = fixed and sufficiently negative)

the contribution AD(s,t) of the quark diagram D to the scattering amplitude

ap (t) -
up to logarithmic factors or in other words

behaves 1ike t)s

sDt(
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*
The Regge trajecoriss aDt(t) are linear in t with slopes depending on the

diagram D and a priori alsc on the choice of the t-channel. In the case of

a ciagram without loops and "empty" t-channel AD(s,t) falls expcnentially with s.

In dual resonance models, for all diagrams with fewer than two Toops

; . bl - A' 5
(Fic. 1) it has be2n found °7 that

*
If one sums classes of gquark dizoraims, the sum of various linear

sirgiaritizs may add un io one "renormalized” slightly nonlinear pole or
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This leads s to conjecture that in general

8) the limiting form (2.3) holds for all quark diagrams no matter

how many loops they have.

Consider now the 1imit of high erergy fixed angle scattering, i.e.,

I ! H,f) Wl - ¢
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or equivalently
(5‘} -5 o0
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or its crossed s¢—»t, s «>u forms.
Again on the basis that the statements have been verified2’6 for all
diagrams with less than two loops we conjecture that

C) for any quark diagram D, in the Timit (2.4), the combination

ing§)'] In A.(s.z) scales i.e., is a function fD(z) only of z.

D) The function fD(z) is universal i.e., does not devend on the diagram

D. Me shall therefore call it f(z} from now on.

£Y For anv auark diacram with or without Toops f(z) is given essentially

Vopz Taantg Poepn tenm Thpne g
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There is some ambiguity about where the cuts arising from the logarithms should
lie in the complex z plane. This guestion has physical content in terms of
the empty channel guestion and will be studied in detail in Section 4 .

In view of statement C) we shall henceforth refer to the kinematic

limit (2.1) as the logarithmic scaling regime or the logarithmic scaling limit.

Obviously, it is net our intenticn to leave all these statements at the
conjectural level, Uhat we shall rather do is, to find the relationships between
these statements. Of course, we shall find that they are not independent.

Much less than the full machinery of dual resonance models need be activated to
arrive at these results. We shall see in Section 4 that statements B)-E) all
follow from the assumed Rggge behavior with linear trajectories plus a certain an-
alyticity assumption to be formulated in Séction 3 when we require consistency

between the Regge behavior and the behavior at fixed angle.



3. COUSISTENCY REQUIREMELT IN THE "OVERLAP" REGION AND THE ANALYTICITY ASSUMPTICH,

The_basis of the analysis which follows is the requirement of consistency
between the Regge regime and the lTogarithmic scaling regirme in the kinematic
region of "overlap" where they both apply. More specifically, every quark
diagram amplitude obeys equation (2.3) in the Regge regime (i.e., for [s| >> [t!).
On the other hand the logarithmic scaling regime obtains where !s| and |t]
are both large but their ratic is fixed. When both [s] and |t| are large
(]s], {t] > nﬁ ) and |s] »>> |t], both the Regge and the Jogarithmic scaling
regimes are applicable, (the "overlap" region) and we require that they be
mutually consistent.

As can be easily checked using eq. (2.4) the bver1ap between the logarithmic
scaling and the t-channel Recge ([t]| << |s|, |u|) regimes occurs for

] — o Z >4 (3.12)

Similarly, overlap with the u- and s- chainel Regge regimes corresponds to

‘S/ -3 20 = > -/ (3.1b)
and

Bl = =~ A (3.7¢)

respectiveiy.

Thus enforcing the consistency criteria in the overiap recgion is going
to give us information on (a'Dis)-] In AD(S,Z) in the kinematic regions of (3.1}.
In ordar to determirs the Lehavior of tnis function in the entire z plane for

s+ @, come kind of avlyticity asswition is essential. Ye arcain look to

tne -1 resonance r odal for cuicerce. In the duz’ resonance mcdel we know



that for quark diagrams with fewer than two loops
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where f(z) is given essentially by eu. {2.5). Ue observe two crucial properties
of f{z). First f(z) is an analytic function of z whose only singularities are
located at z = = 1 and z = =. Recall that in the dual resonance model (again
for quark diagrams with fewer than two loops) Regge behavior (2.2) occurs and
the Regge residues obey eq. (2.3). This Regge behavior, in the overlap regicn

(3.1a), can be written in the form

— (d.be- .S) Jé}\, )4$ {5 2) 15}‘:% 2 -z (3.3a)
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where we are neglecting terms which are both zero and regular at z = 1.

Likewise we have
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timiting behavior implied by'the consistency conditions eqs. {3.3) is, of course,
exhibited by f{z) of eq. (2.5).
The second important property of the function f(z) is that not only
does flz) satisfy eqs. {3.3) but these condtions are sufficient to determine
its form. More explicitly, if we require that the nature of the singularities

of f{z) +z= 1landz ==«b

[

of exactly the form given Lv the consistency
) |

critaria 7.3} {e.qg., that thare be nc torm (1-2

(o)

- i ! - I
In{l-z) in (x Dts) n Ag (s,t)
¢s z o+ 1) thew €7z ~ust have the general foram (2.5). Mith the above discussion

-

as a 7o e owe gtate cor ol iloity sssuontion in the form:
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F} The Jleading term in the asymptotic {large s) expansion of the function

j;]ets)']1n An(s,t) 75 enclytic in z except for possible singularitics at

z==1and z = «. The nature of these singularities is completelv determined

by the consistency criteria in the overlap region.

This analyticity assumntion may nct ssem natural at first sight and
we shall therefore try to motivate it further. A priori, the function (a'Dts)'}
In AD(s,t) could'pg expected to have many more singularities in the variable z
than those discussed above. In the limit s 5 o, AD(s,z) has singularities at
the points

T -
2 ~ 0+ZW“L 2 :“_0+m%ﬂ) |
L e 5

= (3.4)

Here M and mun are the masses of higher lying particles and/or thresholds

in the t and u channels respectively. Because of the lTinearity of the trajectories,
even in zero loop diagrams (fci which no multi-particles thresholds exists),

there will exist mn's larger than any mass M. Moreover, since the difference

m - mn2 is constant ( ~ 12 Gevz), one sees that as s - = the singularities

ntl
(3.4) cover even more densé@the half-infinite straight lines

Z’ bl I+ «;e-—t"f
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{here y = ... s). If, fcr example, all the original singularities were poles,

the s = = Timit yields two coritinuous 1lines of poles exterding from + 1 t0 « 3ng

fro - 7 to -=0 This dmpTies two cuts with hrasch points at z=+1 and =. A similer
ar_ e LoCo s beowadt comztrrtoo the thieshcld singularities arongst (3.4).
It 45 thus 2Tausibls that as o - f;gg(5=:] nould have singularities only at
7= -0 U anl feoeoowhich resreieat the "condensation” of the actual physical
~eodaritiec. Toodg et SUITAZAR to issure that In Ag and hence (1'Ds)~]1n As

5 Ly Sl ; = 2vo, of fourse, ignoring possible dsolatec
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zercs in AD at t ; 0 such as nonsense, wrong singnature zeroes.) Hovever we
snhall assume that, in tie 2avmptotically leading term of (n'Ds)-T1n AB’ the
only singularities are thz above branch points at z = = 1 and «. The remaining
singularities which one ray expect are to appear only in non “oading terms.

This then is assumpiion F as mentioned above. For technical reascns, which

will be clear shortly, we cannct proceed without it (or some related aznalyticity

assumptions) so we shall henceforth accept it.



. JUSTIFICATION OF THE LOGARITHMIC SCALTHG LAY

~

We are now in a position to consider the staterents B} - E} made in

~

Section 7. OQur basis for studyving them is the Recge behavior assumption A}

]

of Section 2 and the analyticity requirement F) of Section 3.
Once these are granted we can start proving the remaining statements. e
first observe that hecause of A) the conditions of the Ceru'lus-ﬂartin-thiu—':an7
theorem are met individually for every guark diagram. We therefore conclude
that | |
Lemma Assumption A)‘imp1ies, for every quark diagram D, the bound
-~ (o(_;tfi)d’,@n (A, G2)] < c(z) s | i B
(4.1)
where ¢{z) is a positive definite function (of course this upper bound on
-1n|AD[ is a lower bound on IADI).
To prove the remaining statements we will extensively use the method of

requiring consistency in the overlap region between the Fegge and fixed

angle regions which was discussed at the outset of Section 3. As was pointed
out, the Regge limit requires that eq. (2.2} hold. HNow one can distinguish

. ) - , , .
four cases appropriate to the fixed angle limit (4 Ds® @ pt°> @ py 2re the
a priori different slopes of the dominant s, t, and u channel singularities of
the diagram D}:

i) m‘é{,’ 'tt-,ut"/{/n ,Q.De = 0 and similarly for 3 (s)
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and *8‘1)“ ()

i) _L4< B\ //u(j + {ut ‘ = ard similarly for Z /E:)
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and 74 (cz>

D
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and 3. {v’ with at least one of the constants (. € ¢
‘9)\,\ "‘); | S

!
z

Y

different from - 1

iv) b 3 /vl td4t = -/ and similarly for 4 ( 5)
i - ;s

i

and!bd> ()

Consider first case i). Then, in the "overlap" region of the Regge
and fixed angle regimes the 1n sDt(t) term in Eq. (2.2) wili be the dominant
term. If we consdier now the corresponding equation for 1nlAD[, it will also
be dominated by the In gy, | term and becomes

(o )7 A |4 (5,2 iy, 5) s, 0

ovc«raF (4.2)
'ffs.c-h
Note that
wp = A lare B, (ex] L O
Hape = L lpet] -1y 0] S 000
(4.3)
holds since throughout what follows we shall be assuming linear trajectories
and "signature type" phase factors. These relations, together with i), yield

the following result in the overlap region

{i- 2> fus
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In particular for the t channel overlap region we are interested in, z is qear'],

(1-2)

(recall, t = - S Y. Similar results hoid for z near - 1 (u channel) and

To- - e (3 Channel). Menoe Too err positive cefinite C(z) if z is in any of
U ouerl noraniors 2o 1, 7 s - 1,07 - ey
L) . g g o s 7))
' D N T b (4,75 (4.5)



which contradicts the lemma (note that we have specifically ruled out the possi-
tility of exnonentially large arnlitudes i.e., we take both sides of eq. (4.1)
to be positivel and this excludes case 1),

For cases 1ii) and 1iii) we can now proceed by defining the function diz)
as

o o .o ; s
o - e A (2> s o+ O
— (JM. o) Aa /43 (S, 2> T el (25 + &1 (4.6)
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According to the 1emmé and our assumption of "signature tvpe" phases this must
be the leading term. (Note that it would not have been leading in case 1) ).
Assumption F) then implies that d(z) must be an analytic function of z except
for possible singularities at z = + 1 and z = =,
Consider case 14i). From eq. (2.2) the leading term in the {t-channel)
Regge limit of 1In AD is nov u'Dtt In s. This Timit , in the overlap region,
appears as |s| >> mg, |t} >> mg but [t/s| << 1. These conditions as has
already been been pointed out, then translate into |s| + « , z- 1 in the fixed
angle regime. Thus we have
~@ ) A A (s, T T F s s P
D b / bl — 2 K)
2= >/ (4.7a)

or

& () - DE e o)

Z 2y £ (4.7b).

Hence d(7) {c recylar at z=1. In the overlap region between the fixed z and

socioanet Tegra reghion {10 send, 1t e 3, s/t << N 0r fs] v e, 2 - w)

L2 leadicz Uorm ods given by the oo S Tn s part of the J'DSS Tn t term (the
o

+'n.8 Inoz part of the terrm iz given Ly the next term in the asymptotic expansion
s
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in s and does nct contribute to d(z)). Thus we have

Y A fea e e e G
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ar
i
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Sy e~ )
(z) PO > (4.8b)

Finally in the region of overlap with the u channel Regge regime (|s]| >> mg,
1t] »» mé, IEW = {1+ t/s| << 1, so that |s! » », 2 + ~ 1} the leading term

is chu ulns and we find

t
p - | ey Lk o
R e - ICTE
3 -t Ay o ot (4.9a)
ar
e d$ 'I+%
A (e) P = (—3_—) (4.9b)

From (4.7) and (4.9) and assumption F) it follows that d{(z} is an entire

function of z . Condition (4.8) then implies that d(z) = constant which is

incompatible with (4.7) and (4.9). Thus case 1i) is ruled out. )
Case 1ii1) is treated along the same Tines. We find that (4.7b) - (4.9b)

are replaced by

Aor ~ / T ( - \
. — T , —_—
o Ce) Pl C, ) il ~ (4.10)
. o{,
N Y R
oo - X < e (4]])

VAN / P CJL’J', ' i 2 ‘
o :,_.3_..4_..'; [t C.) - ( = ) (4.12)



Assumpti

(4.12) are incompatible as iong as at least one of Cgs €

frem -1,

U
maining
allowed

:Cu=c

O

on F) again implies that d(z) is entire and therefore that (4.10) -

7 Cu is different

e thus find that case {v) and hence statement B), is the only re-

possibility., Let us now convince ourselves that case iv) is indeed
x®

and that no contradictions arise in this case. In case iv), C, =

t

c = - 1 and from Lgs. (4.10) - (4.12) we see that d(z) = 0. Thus there

is now no 1In s term in (a'Dts)-}In Ap-  As required by the Regge regimes the

Teading

-

where fD
no longe

Tn eDt(t

term in In AD must be at least linear in s, so that

| - /
é{j+\s) {Jzk /%D (5; E—) 'E;ii?;f: Ji)ﬁ}) + O /}Z:;‘;)
2 & Jaxes

{(z) 15 nonzero. This establishes Statement C. It follows that it is

(4.13)

r sufficient to consider only the teading asymptotic -apyt In(t) term in

) but one must also consider terms of order t as such terms will con-

tribute to fD(z) in (4.13). Define therefore

el 2o

: ! !
/ea /43_,{ ) ——— - 0{},' t bt + Cj)f_-dbf'i_ (4.14)

where CD
which re

07 £gs.

t is in general a complex, diagram dependent constant. The constraints
sult from requiring consistency in the overlap regions (the analogues

(£.10) - {4.72)) now become

. I - ‘
A7 ey —— fy D - (/{:—{;> (4.152)
’_b-‘“) 2 ! - ~(- e L )

Pecall that we are disrecarcing irrelevant complicaticns due to signature-

- .
[T

teten o oat the end of this section.
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With the appearance of the logarithmic singularities it is useful to consider

the following equivalent, but mcre suggestive forms:

J. (-?) R _f:_?[a 'flt(:if-ﬁ) +££1 (f‘\?)].’_ﬁ (f-*i‘) )
d =/ +

ar b (4.168

r+e [ c b (/ff) +9(f‘tt/f-f):v M (,#) e!m.

5, ) N e T
where the M's and a, b, ¢, d are determined by the CD's. The Togarithms are

so defined that they have a cut extending from the branch point (z =41 or - 1)

to infinity along that part of the real axis where their argumenF is negative. On
the upper lip of this cut they are definéd to have an imaginary part equal

to im. These equations (4.16) then determine the nature of the singularities

in fD(z) at z = + 1 and =. VUsing the analyticity assumption F), the nature

(4.16) of the singularities at z = + 1 of fD(z) then establishes the

form of fD(z), the leading term in - (a' s)"]1n AD(s,z), to be:

f = - P[rslatben]
Rl oo+ b

N (4.17)
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where E(z) is an entire function z. Mow in the limit z - -= we have

/) {ﬁ £/

L

’ o, 2/ 4 (!. )
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Lol I li
Z T O 4.18
= L Tr ) [“ ¢ b ,_,(";‘ C"'r d.i ,,4,){ E:h;,f-“ ‘e + O (_f ) ( )
ot

Since E(z) is entire, asymototically it cannot cancel the z 1n lz| term. Such

a term is ruled out by the overlap constraint (4.15¢). Thus we must have

/ i
= A
Q/_Dt Dy _ (4.19)
Next by comparing the 1n |z| terms in (4.18) and (4.15¢c) and using (4.19) we
find that
/ f
o, = o
s bt (4.20)
Finally, we study E(z) by first considering the behavior of fD(z} in the limits
z+- wand z~> + =, By using our knowledge of the singularity structure

at infinity (given by consistency with fixed S Regge behavior, i.e. (4.15 c))

we find

and ~ ,;:{'—C

where e 1s some constant. E{z) teing entire, must have this form everywhere,

Eozed on cunsistency with fikaed t and fixed u Fegge behavicr we recuire fD(z
Toovootolo ot zo= 2 Y (Tos. (40770 a4 {2158)) and we find

- s _ P

¢ . S - -
and

f\: T
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sc that E (57) N CTy
where +i1/2 correspaads to taking the physical z values to enrresnond to apnroach-
'ing the real axis ftrom aboVe‘ COHQC.U!’.Q all these results ve find, for a

diagram O with Regge behavior in all channels, i.e., no "empty" channels,

o . . Z
) 3 f‘ 2 .- 7 N B _:” X 2- . __.——-]
Tj ({ ) = j (? ) = —_ [{Nl ‘_f.u o+ {;‘ __2_‘_ ] .,> f_iﬁ [/L(« —.—j‘ff- fu T2 +
5 .

p;%.

‘1 f_'? »2—-, ? (4.20)

Except for the question of empty channels to be discussed below, this
result is independent of the diagram D. Note that for our definitions of the
logarithmic cuts ?ﬁz) is real for all z on the upper 1ip of the real axis.
Further, we saw that

T IV
bt bs du > (4.21)

so that a‘o defines an intrinsic scale for the diagram D. We also note that the

function f{z) of Eq. (4.20) differs from Veneziaqo‘s'function

e ;2 Ie.
(z)- w = o B2 2
) rl -2 3 73 s (2.5)

only by a term that is purely imaginary for real z. As far as cross-sections

for physical processes are concerned these two functions are completely
eauivalent. It ¥sin this sense thit the validity of statemerts D and E is to
be regarded as established. We can summarize our results in the form of two
theorems, |

heover 1. Assumrtions A) end F) irply statements 8), C), D) and E),

Tneove. 2. Assumtions A) and £} further imply that for any quark

cieovo without emnty chanpels the trajectories of the dominant comnlex angular




momentum plane singularities in all (three} Mandelstam channels must have the

same s}ope (See eq, (4.21)_).

This concludes our proof. What we have found is that the assumptions
A) and F) are sufficient to derive all the scaling laws, stated in Section 2.

We also get the bonus of Theorem 2, which, as we shall see in Section 6, leads
to an interesting result concerning diffraction.

To conclude this section we shall briefly discuss the case of tree
diagrams with ehpty channels. Consider, for exampTe,uthe diagram of fig. la
which has an empty u-channel. For {t{, |s| > = , and u fixed, this amplitude will
not evidence Regge behavior (i.e., does not take the form s(u) Sa(u)) but rather
will fall exponentially as a function of one of the large kinematic variables,
say s. In the overlap region with fixed z this requires the.appearance of a
negative imaginary constant term T in the z » - 1 Timit of fplz). ¥hen [s| + =
and arg s ~ ¢ > 0 (the correct Regge regime in the narrow resonance approximation)
the term - sC in 1In AD will supply the appropriate exponential fall off
(Re(-sE) - - «), The steps given above can be easily repeated including
the appropriate term of -im in Egs. (4.18b). The result we find is

-2 I+2
'![3) z" < -—-":- + dl .._2.1
erpty u channel a I+ & (4.22a)

1

Similarly for the other cases we Tind

i {'2 A 2 '.,L-—’ > -
(2 ) R T e (4.22b)
empty t channel / ‘ e
/ .2 - e
17 ) Lo S e mee rh
, e ; -2 (é.22¢).
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where the latter case is just the usual Veneziano result (Eq. {2.5)). Acain we
emphasize that the results in fos. (4.22) differ frem Za. (4.20) only in the
imaginzry vart. Hence when ar- = is small (the physical case for narrov

rescnances) and z not too close to = 1 the corrections to logaritamic scaling

due to empty channels are expected to be very small.



5. PHYSICAL MEANTIG OF THE LOGARITHMIC SCALING LAY

We have established on rather general grounds the logarithmic scaling
law expressed in statements C), D), E). Of course this is not a usual scaling
Taw connected with some form of scale-invariance. It rather tells us that the

hadronic amplitude corresponding to a given quark diagram has an intrinsic

scale {i.e., a very specific breaking of scale invariance) given by the commgn

slope of the dominant Regge singularities in all its Mandelstam channels. This

intrinsic scale permits the construction of an essentially unique dimensionless
function of the Mandelstam variables that determines an exponential fall-off
when all Mandelstam variables become large but their ratios are kept fixed.
This exponential fall-off can be viewed as a simuTtanedus cut-off in the transverse
momenta of all the (nonempty) Mandelstam channels. The high symmetry of the
dimensionless function essentially shows that transverse momenta in all channels
are kept within identical bounds,

To see this in more detail we remark that f{(z) differs from the combina-
tion .

(C‘(’ _‘3)—" [Sfért S + f é’nzf‘ + U 6(&‘-)

> (5.1)

only by +in which is irrelevant for the asymptotic behavior of differential
cross-sections. From the form (5.1) it is clear that whatever differences
there may be between the three Mandelstam channels (1ike different Regge inter-
cepts, differeht internal quantum numbers, etc...) are "washad out" in the
Tog=vithxic scaling r=gire. These differences which account e.g., for forward-
bachwars as;oretrioc ovicnate in tine Tacter pls,z) of Eq. (1.2) which is
croer-bounded in s so that its contvibution to (a'Ds)'1 In A

-1 )
s I s for larce enaraies,

p 9oes to zero like
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6. THE SLOPE OF THE POMERANCHUK TRAJECTORY, A SIMPLE APPLICATIQON OF THEQOREM 2
8

According to the twisted loop model of diffraction,” the Pomeranchuk
term originates in the quark diagram of fig. 1d. Many predictions of this
model are in good agreement with experiment.9 This diagram has been evaluated

5,10

in dual resconance models and it is found there, after elaborate calculations,

that the slope of the Pomeranchuk trajectory is

J o’ -
oJP = “/ - (6.1)

where o' is the universal slope of the hadronic {o, N, K*, A, etc...) Regge-
pole trajectories.

This result can be simply understood on the basis of Theorem 2. The
Pomeranchuk in the t-channel appears as two consecutive Regge exchanges., But
as these are not "flanked" by crosses (i.e., by particle-Reggeon amplitudes
with third double spectral function) the resulting singularity (according to

]]) is not a Regge-Regge cut or sum of such cuts.

Mandelstam and Finkelstein
By looking only in the t-channel there is thus no simple explanation of Eq.
{6.1). In fact the t-channel also exhibits‘a double pole (rencrmalization
effect) with slope o',
In the s-channel we also have two Regge exchanges, this time flanked

by crosses so that they do lead to Regge-Regge (RR) cuts. These are the only

and therefore dominant singularities in the s-channel. Thus

b /
XsT Yre (6.2)

But, the slope of RR-cuts is well known to be given by

! !
alﬂ}l: /2 (6.3)
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£/ Theorer 2 we then see that the double pole in the t-chanrnel cannot be deminant
(2: i-s slope is a') and that therefore the Pomeranchuk trajectory must be
Cu inant
/ /
> R ¢
1 J” (6.4)
and
o{l
/ ) i
- = O/ = o =
2 s ¢ = p (6.5)

*
This proves {5.1).

(Bicause the same quark diagram that b%h§ves for large s >> - t >> m?
aslt appls

as s P sbehaves for t »>> - 5 >> m2p as t RR the slopes of the Pomeranchuk
and of the RR-cut must be equal, or else the law that every quark diagram

nas a unique scale would be violated.

More generally, the scale of any quark diagram can be simply determined
from the knowledge of the slope of the dominant trajectory in any one of its
channels. This then requires the equality of the slopes of many further pairs
of complex plane singularities. With Tinear Regge-trajectories many such

sy . t - 1 1 = ]
equalities cccur (e.g., a RRR = %'PR® ®'RRRR ~ ¢ pp’ etc...)

— ] 1 [ ]
=G = WOl1CHh ar
5 1 ¢ o H1cn g

Lovalace 7 has roiated out thot the eouations of
T othe cunl resonance model, micht serve as

Ve

LUTOLEnT o wsdamslandins th shone of the Poreranchuk singularity,

. e N - H . St IS ~ - .
Soninerelizod boooont JTaosams wdeh o Toons.
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7. PHENOMENCLOGY OF FIXED AIGLE SCATTERING

To apply our ideas to experiment, we have to first observe that all cur
resutts ~ezriained to the anplitudes attached to individual quark diagrams.
In experirent one dces not measure such amplitudes, but rather an infinite sum
of quark diagram amplitudes. There is no guarantee, that such an infinite
suin cannot behave in a radically different way from its individual termsf Cne
might consider, nevertheless, the possibility that for certain intervals in the
variables s and z = cos 6 one, or a few, quark diagrams will dominate the sum.
This is similar to the idea that in the Regge regime one or a few diagrams
dominate the sum, which is known to work in reality. According to our 1ogarithmic.

scating Taw

r 9
. ol 5 .#[i"—)-r‘— Ol s
dn Ay G g5 %) )
J-:é:xe,af
where a'D is the scale of the quark diagram D. If the quark diagram D becomes
dominant,

Ao G A AT b A

(7.2)
so that

Ao

o o 2o s 4+ O(bus)

ot (7.3)

/d ¢ should be an approximately linear function of the variable

w=sf{z). In fig. 2a we present the data13

for wide angle pp-scattering
plotted ncajrsy . I¥ we concentirate first on'u’baTues in the rangse
":‘ 1.

v
_ {?Yga role thet o o colz ot varicus s values seem to Tie on a single

ES
Aithoucsh cur draut ds very Sifferent, it could even hanpen that sums

-~ . 1

over o otnool an T dTages 3o Bt the scaling behavier of Ea. (1.1).



straight line in agreement with our expectations. The siope of the straight

line suggests a‘D =0 0.4 Ge\.’"2 for the diagram dominant in this |/ range as one
would exrest for single Pomerenchuk exchange. iext mote that for 15 « - 30 Cv©
the data at the various s values ¢do not agree but do seem to lie on straigint

1ines which are parallel to a surprising degree of accuracy. This suggests
considering a more general form such as in Eq. {7.3) i.e., In dc/dt +a In s.

In Fig. 2b we plot Tn % dt + 3.3 1n s (the value 3.3 is purely phenomenclogical).
For the range 15 <n\J'< 30, the cormon slope indicates that the dominant diagram

*
2 which is suggestive of a PP-cut term (as one would expect,

has o' s 0.26 GeV”
for example, in a naive eikonal model). This combination of two terms, one
dominant for ﬁf_i 15 and one dominant for 5 5_1)3_30 offers a simple explanation
of the well-known bréak in the high energy pp-angular distribution. Although
tﬁe agreement between Eq. {7.3) and the data is quite striking, it is by no means
decisive.** Indeed it has been ciaimed that the same data are well fitted by

a scaling law of the type {1.1). Thus more experiments are needed, before one

can distinguish the togarithmic scaling law from asymptotic scale-invariance.

*If this interpretation of the data in terms of P- and PP-cut exchange is
correct, then one would expect pp-scattering in the similar kinematical region
(5 <A¥< 30) to scale logarithmically just like pp-scattering. Morecver 1ndd/dt
for pp and pp scattering are expected to be nearly equal in this region.

* .
To do 2 deteailed fit with the ftio terms suggested above would recuire,
for example, precise knowledge of the relative phases.



A most important experimental task is the measurement of larae anale-hiah eneray

differential cross-sections for inelastic scattering, i.e., for reactions like

rh-chavoe exchenge scattering, associated productien, or resonance nreductior

(e.a., =l ~ 72 etec...) As there is no Pomeranchuk term in such reactions anc

the Regge pcle and cut slopes being larcer than Pomeranchuk or PP-cut slopes,
one expects larger values of a'D for inelastic scattering than for elastic

scattering.



8.  CONCLUSIONS

We have seern that in a world with straight line Regge trajectories,

incividual quark dizgrams have an intrirsic scale which can be cbtained from

the Jogarithmic scaling law (1.3) (or more generally (7.1))*. Dominant
singularities in the complex angular momentum planes of the various {non-

empty) Mandelstar channels of a given quark diagram must have the same siope

as dictated by the existence of the intrinsic scale. This has led us to a
simple explanation for the equality of the slopes of the Pomeranchuk singularity
and of Regge-Regge cuts. Phenomenologically too, this picture agrees with the,
admittedly meager, data. As was stressed before, more experiments especially

on inelastic two body processes (A+B > A'+B' with A' # A and/or B' # B) are

needed before this picture can be established or ruled out.
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It v oninteresciag woonion tu investigate Togarithmic scaiing laws
particie nrocesses. Via Mueller type arguments one
thrio scaling lavs for inclusive processes. A spacial
f this hus teon already considerad by Huang and Segré and de Tar et. al.
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FIGURE CAPTIONS

rig. 1:  Ouark diagrams with less than two Toops for meson-meson scattering.

Fig. 2: Tests of logarithmic scaling in pp-scattering.
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